Download doing bayesian data analysis a tutorial with r jags and stan in pdf or read doing bayesian data analysis a tutorial with r jags and stan in pdf online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get doing bayesian data analysis a tutorial with r jags and stan in pdf book now. This site is like a library, Use search box in the widget to get ebook that you want.



Doing Bayesian Data Analysis

Author: John Kruschke
Publisher: Academic Press
ISBN: 0124059163
Size: 46.55 MB
Format: PDF, Kindle
View: 4932
Download and Read
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. Accessible, including the basics of essential concepts of probability and random sampling Examples with R programming language and JAGS software Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) Coverage of experiment planning R and JAGS computer programming code on website Exercises have explicit purposes and guidelines for accomplishment Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs

Wahrscheinlichkeitsrechnung Und Statistik

Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 3709169445
Size: 70.49 MB
Format: PDF, Mobi
View: 6358
Download and Read
Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

R In A Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 3897216507
Size: 47.58 MB
Format: PDF, Docs
View: 2816
Download and Read
Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Statistik Workshop F R Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 3868993436
Size: 41.89 MB
Format: PDF
View: 7124
Download and Read
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Grundlagen Der Datenanalyse Mit R

Author: Daniel Wollschläger
Publisher: Springer-Verlag
ISBN: 3662536706
Size: 48.62 MB
Format: PDF, ePub
View: 3506
Download and Read
Dieses Buch liefert eine anwendungsorientierte Einführung in die Datenauswertung mit der freien Statistikumgebung R. Es behandelt deskriptive Auswertungen ebenso umfassend wie inferenzstatistische Analysen. Neben klassischen univariaten Verfahren berücksichtigt das Buch nonparametrische Tests, Resampling-Methoden und multivariate Statistik. Zudem deckt es die vielfältigen Möglichkeiten ab, Daten aufzubereiten und Diagramme zu erstellen. Die statistischen Verfahren werden anhand von Beispielen erläutert und an vielen Stellen mit Diagrammen illustriert. Das Buch richtet sich an alle, die R kennenlernen und in konkreten Aufgabenstellungen einsetzen möchten, ohne bereits über Vorerfahrungen mit befehlsgesteuerten Programmen oder Programmiersprachen zu verfügen. In die vierte Auflage sind sowohl die Neuerungen von R 3.3.2 als auch jüngere Entwicklungen bei den Zusatzpaketen eingeflossen. Gleichzeitig wurde der Text überarbeitet und um ein eigenes Kapitel zu Diagrammen mit ggplot2 erweitert. Der Text behandelt nun auch allgemeine numerische Methoden wie Nullstellensuche, numerische Integration und Ableitung sowie numerische Optimierung.

Die Berechnung Der Zukunft

Author: Nate Silver
Publisher: Heyne Verlag
ISBN: 3641112702
Size: 33.46 MB
Format: PDF, Mobi
View: 6333
Download and Read
Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Statistik Klassisch Oder Bayes

Author: Wolfgang Tschirk
Publisher: Springer-Verlag
ISBN: 3642543855
Size: 36.73 MB
Format: PDF, Docs
View: 4131
Download and Read
Die schließende Statistik ist die Wissenschaft davon, aus einer Stichprobe auf die Gesamtheit zu schließen. In ihr gibt es zwei vorherrschende Lehren: die klassische Statistik und die Bayes-Statistik. Die klassische Statistik verwendet zum Schätzen von Parametern und zum Testen von Hypothesen nur die Stichprobe; die bayessche stellt zusätzlich in Rechnung, was man sonst noch über das Problem weiß oder annimmt. Das hängt mit unterschiedlichen Meinungen darüber zusammen, was Wahrscheinlichkeit bedeutet: relative Häufigkeit in Zufallsexperimenten (die klassische Sicht) oder einen Ausdruck des Wissens (die bayessche). Dieses Buch soll die Standpunkte klären und prüfen: Ausgehend vom jeweiligen Wahrscheinlichkeitsbegriff werden klassische und bayessche Methoden entwickelt und auf Schätz- und Testprobleme angewandt, wobei Gemeinsamkeiten und Unterschiede hervorgehoben werden und besonderes Augenmerk auf die Interpretation der Ergebnisse gerichtet ist.

Mathe Manga Statistik

Author: Shin Takahashi
Publisher: Springer-Verlag
ISBN: 9783834805669
Size: 12.70 MB
Format: PDF, Mobi
View: 5680
Download and Read
Statistik ist trocken und macht keinen Spaß? Falsch! Mit diesem Manga lernt man die Grundlagen der Statistik kennen, kann sie in zahlreichen Aufgaben anwenden und anhand der Lösungen seinen Lernfortschritt überprüfen – und hat auch noch eine Menge Spaß dabei! Eigentlich will die Schülerin Rui nur einen Arbeitskollegen ihres Vaters beeindrucken und nimmt daher Nachhilfe in Statistik. Doch schnell bemerkt auch sie, wie interessant Statistik sein kann, wenn man beispielsweise Statistiken über Nudelsuppen erstellt. Nur ihren Lehrer hatte sich Rui etwas anders vorgestellt, er scheint ein langweiliger Streber zu sein – oder?

Big Data In Cognitive Science

Author: Michael N. Jones
Publisher: Psychology Press
ISBN: 1315413566
Size: 75.20 MB
Format: PDF, Mobi
View: 2990
Download and Read
While laboratory research is the backbone of collecting experimental data in cognitive science, a rapidly increasing amount of research is now capitalizing on large-scale and real-world digital data. Each piece of data is a trace of human behavior and offers us a potential clue to understanding basic cognitive principles. However, we have to be able to put the pieces together in a reasonable way, which necessitates both advances in our theoretical models and development of new methodological techniques. The primary goal of this volume is to present cutting-edge examples of mining large-scale and naturalistic data to discover important principles of cognition and evaluate theories that would not be possible without such a scale. This book also has a mission to stimulate cognitive scientists to consider new ways to harness big data in order to enhance our understanding of fundamental cognitive processes. Finally, this book aims to warn of the potential pitfalls of using, or being over-reliant on, big data and to show how big data can work alongside traditional, rigorously gathered experimental data rather than simply supersede it. In sum, this groundbreaking volume presents cognitive scientists and those in related fields with an exciting, detailed, stimulating, and realistic introduction to big data – and to show how it may greatly advance our understanding of the principles of human memory, perception, categorization, decision-making, language, problem-solving, and representation.

Bayesian Models For Astrophysical Data

Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1108210740
Size: 80.48 MB
Format: PDF, Kindle
View: 7269
Download and Read
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.